CBD Oil Side Effects Eyes


Buy CBD Oil Online

Cannabidiol Signaling in the Eye and Its Potential as an Ocular Therapeutic Agent AA and MD wrote the initial versions of the review. LS and ZHS edited and finalized the manuscript. Zhao-Hui Change in Refractive Error Associated With the Use of Cannabidiol Oil This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits

Cannabidiol Signaling in the Eye and Its Potential as an Ocular Therapeutic Agent

AA and MD wrote the initial versions of the review. LS and ZHS edited and finalized the manuscript.

Zhao-Hui Song, Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, 40292 (USA), Tel. +1-502-852-5160, Fax +1-502-852-7868, [email protected]

This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.


Cannabidiol (CBD), the major non-intoxicating constituent of Cannabis sativa, has gained recent attention due to its putative therapeutic uses for a wide variety of diseases. CBD was discovered in the 1940s and its structure fully characterized in the 1960s. However, for many years most research efforts related to cannabis derived chemicals have focused on Δ 9 -tetrahydrocannabinol (THC). In contrast to THC, the lack of intoxicating psychoactivity associated with CBD highlights the potential of this cannabinoid for clinical drug development. This review details in vitro and in vivo studies of CBD related to the eye, the therapeutic potential of cannabidiol for various ocular conditions, and molecular targets and mechanisms for CBD-induced ocular effects. In addition, challenges of CBD applications for clinical ocular therapeutics and future directions are discussed.

Keywords: Cannabidiol, Molecular target, Mechanism of action, Therapeutic potential, Ocular pharmacology


A brief history of cannabis

Cannabis sativa is a plant species that includes both cannabis and hemp. It first appeared in Chinese medical texts around 2000 years ago [1]. Records from Britain indicate that cannabis was brought from Egypt by Napoleon’s troops in the early 1800s [2]. Shortly thereafter, hemp was introduced to Western medicine when in 1840, a hemp tincture from ground plant matter was reported to be an effective treatment for convulsive disorders and tetanus [3]. By 1851, a cannabis extract was included in the 3 rd edition of the Unites States Pharmacopoeia and readily available in American pharmacies [4, 5].

In 1913, however, cannabis was made illegal in California due to a wide-spread antinarcotics campaign [5]. Cannabis became federally illegal when Harry Anslinger from California introduced the Marijuana Tax Act of 1937 banning the sale and use of cannabis nationally [5, 6]. A negative stigma continued to develop in the US around cannabis, then associated with narcotics, that culminated with the Controlled Substances Act (CSA) of 1970, which classified cannabis and cannabinoids as Schedule I with no recognized medical use [7]. Recently, America is witnessing a revival in the popularity of cannabis, both medically and recreationally. In 1996, California was the first state to legalize cannabis for medical use and more states have followed California in recent years [8]. To date, 16 states and Washington D.C. have legalized both medical and recreational cannabis with an additional 26 states legalizing medical cannabis at varying degrees. Moreover, the Agricultural Acts of 2014 and 2018 removed hemp from the list of controlled substances and redefined industrial hemp as cannabis containing less than 0.3% THC [9, 10]. As a result of the recent wave of recreational and medical cannabis legalization, in conjunction with the end to the prohibition of hemp, cannabis research is quickly expanding.


Cannabidiol (CBD) is one of over 120 chemicals produced by the Cannabis sativa plant termed phytocannabinoids [11, 12]. There are potentially more, as 21 previously unknown cannabinoids were recently identified [13]. The two most abundant phytocannabinoids in cannabis are psychoactive and intoxicating Δ 9 -tetrahydrocannabinol (THC) and non-intoxicating CBD.

CBD was first isolated in the 1940 and its structure and stereochemistry fully determined in 1963 [14, 15]. CBD and THC are both derived from cannabigerolic acid [16]. Although the structure of CBD was discovered before THC [15, 17], THC had been the major focus of research related to cannabis and cannabinoids. This focus is driven, in part, by the activity of THC at the canonical cannabinoid receptors, CB1 and CB2. However, there are many targets for cannabinoids other than CB1 and CB2. For example, CBD has upwards of 65 known targets consisting of receptors, enzymes, ion channels and transient receptor potential (TRP) channels [18].

Cannabinoids in pharmaceuticals

Cannabinoid containing drugs are approved for medical use in the USA and other countries. The drugs differ in their formulation and indicated uses. Dronabinol (Marinol) was the first cannabinoid-containing medicine approved by the FDA in 1985. It is a soft gel capsule containing synthetic THC [19]. Syndros is an oral solution of dronabinol [20]. Cesamet (nabilone) is the third synthetic cannabinoid drug approved by the FDA in May of 2006 [21]. All three are prescribed for anorexia associated with weight loss in AIDS patients and nausea/vomiting in cancer patients [19–22]. While plant-derived THC is a Schedule I substance, Marinol is listed under Schedule III and Cesamet and Syndros are controlled under Schedule II [19–21].

Epidiolex is an oil formulation of CBD approved by the FDA in June of 2018 for treatment of Lennox-Gastaut syndrome and Dravet syndrome, two rare and severe forms of pediatric epilepsy [23]. In July of 2020, it was approved for treating seizures in a rare genetic disease, tuberous sclerosis complex (TSC) [24]. Epidiolex is the only FDA approved drug containing a compound directly derived from cannabis. It was originally classified as schedule V, but is no longer a controlled substance as the FDA deemed it safe and effective for treatment of the aforementioned conditions [25]. Sativex is a 1:1 alcohol solution of THC and CBD administered as an oromucosal spray that is approved in 25 countries for the treatment of pain and spasticity in multiple sclerosis patients [26]. Despite its approval in other countries, Sativex is not yet approved by the FDA in the US.

Research on cannabidiol

CBD, through a variety of mechanisms and targets, has numerous potential therapeutic uses for a plethora of conditions. The assertion of potential therapeutic actions of CBD is based on pre-clinical data, limited clinical data and ongoing human clinical trials. Pre-clinical studies show that CBD has antioxidant [27, 28] anti-inflammatory [27], anti-convulsant [29, 30], neuroprotective [31], and anti-cancer properties [32]. CBD also shows potential as a therapeutic agent in cardiovascular [33], neurological, and neuropsychiatric disorders [26]. The completed clinical trials involve CBD use in epilepsy and seizures disorders (21 trials), general pain and pain associated disorders (19 trials), drug abuse and use disorders (14 trials), other neurologic conditions (4 trials) and psychiatric conditions (11 trials). In addition, there are currently 85 active clinical trials in the United States containing CBD (including Epidiolex and Sativex) on clinicaltrials.gov.

Over the past two decades, multiple studies have investigated the therapeutic potentials of CBD in the eye. There are several published reviews of cannabinoids for treatment of glaucoma [34, 35], and retinal disorders [36, 37]. Nevertheless, there are currently no reviews that focus solely on CBD for ocular conditions. In this review, we aim to fill the gap in literature with a focus on CBD ocular pharmacology. We will discuss therapeutic potentials of CBD for ocular conditions, ocular molecular targets for CBD, and mechanisms of actions of CBD in the eye.


Therapeutic potentials of cannabidiol for ocular conditions

CBD is recognized for its antioxidant, anti-inflammatory and neuroprotective properties. In this section, we discuss the observed effects of CBD in ocular tissues and its indication for ocular disorders. Specifically, we will discuss studies of CBD in corneal inflammation and pain, endotoxin-induced inflammation, excitotoxicity, diabetic retinopathy, and intraocular pressure ( Table 1 and Table 2 ).

Table 1.

Therapeutic potentials of CBD for ocular conditions

Ref. Disease Model CBD route CBD effect Therapeutic relevance
[39] Corneal pain and inflammation Silver nitrate cauterization-induced corneal hyperalgesia in mice topical ↓corneal hyperalgesia ↓neutrophil infiltration CBD is anti-nociceptive and anti-inflammatory in the cornea following corneal surface injury
[44] Retinal inflammation Endotoxin-induced inflammation in rat retina and primary retinal microglial cells intraperitoneal ↓ adenosine reuptake
↓ TNFα production
CBD is anti-inflammatory in the retina via inhibiting adenosine reuptake
[51] Retinal neurotoxicity Intravitreal injection of NMDA in rats intravenous ↓ nitrotyrosine formation
↓lipid peroxidation
↓ apoptosis
CBD is neuroprotective against retinal excitotoxicity
[58] Diabetic retinopathy Streptozotocin-induced diabetic rats intraperitoneal ↓ TNFα, ICAM-1, and VEGF expression
↓ p38 MAP kinase activation
↓ ROS formation
CBD protects retina from diabetes related inflammation, vascular permeability, and neurotoxicity

Table 2.

The effects of CBD on intraocular pressure

Ref Species Route Dose Frequency Vehicle Dose Effect on IOP
[73] Rabbit intravenous 1 application 2% Tween 60 and 3% Arlacel in water 1 mg/kg
10 mg/kg
No change No change
[70] Monkey Oral 1 application 2% Tween 60 and 3% Arlacel in water 10 mg/kg No change
[71] Rabbit intravenous 1 application 100% alcohol 0.1 mg/animal
1 mg/animal
10 mg/animal
No change
No change
No change
[72] Rabbit intravenous 1 application 25% BSA in 95% EtOH 1 mg/animal No change
[75] Rabbit Topical 1 application Mineral oil 0.0001%

Sesame oil 0.1% No change
[74] Human intravenous 1 application 25% human serum albumin 20 mg/person
[76] Cats Topical via minipump Continuously for 9 days Polyethylene glycol 20 mg/hour
[64] Human Sublingual 4 spray at 5-minute intervals Oromucosal spray with non-specified vehicle 20 mg
40 mg
No change
Transient ↑
[63] Wild type C57/B6 Mice topical 1 application Tocrisolve, a soya-based solvent 5 mM ↑ at 1 and 4 hours
CB1 knockout mice 5 mM ↓ at 1 hour

Corneal Inflammation and pain

The cornea is a thin and avascular tissue that is innervated by sensory nerves. When corneal damage occurs due to infection, surgery, or trauma, it can develop into corneal neuropathic pain characterized by hyperalgesia, chronic and debilitating pain, and inflammation [38, 39]. The inflammatory response to corneal damage leads to the production of proinflammatory cytokines, recruitment of leukocytes, release of pain-producing neuropeptides, and neovascularization (NV) in the cornea [38, 39].

In a recent study, CBD was found to be anti-nociceptive and anti-inflammatory in a mouse model of corneal hyperalgesia [39] ( Table 1 ). Mice with silver nitrate cauterized corneas that treated with CBD showed lower pain scores in capsaicin pain challenges, indicating an antinociceptive effect of CBD. Moreover, CBD treated corneas showed less corneal neutrophil infiltration which is indicative of a CBD-induced anti-inflammatory effect. Lastly, WAY100635, a 5HT1A antagonist, blocked the effects of CBD, suggesting that the anti-inflammatory and anti-nociceptive effects are likely mediated through activation of the serotonin 5HT1A receptor [39]. This study highlights CBD as a potential therapeutic for corneal pain and inflammation.

Endotoxin-induced inflammation

The mammalian retina contains three distinct glia cells types: Müller cells, astrocytes, and microglia. Microglial cells are the resident macrophages of the retina and play important roles in retinal homeostasis [40]. Activation of microglial cells induces the release of proinflammatory cytokines, such as IL-1β and TNFα, instigating an inflammatory response. Prolonged microglial activation and chronic inflammation contribute to disease pathology and retinal degeneration [40].

The degree of microglial activation may relate to the severity of injury. In vitro and in vivo treatment with lipopolysaccharide (LPS), an endotoxin from bacteria, is used to study inflammation through activated microglia [41]. Extracellular adenosine can function as an endogenous anti-inflammatory agent suppressing immune cell responses. For example, adenosine inhibits pro-inflammatory cytokine expression such as TNFα [42]. However, the anti-inflammatory effects of adenosine are short, as it is rapidly taken up by adjacent cells. Inhibitors of adenosine uptake may enhance the adenosine signaling and endogenous activity [43]. CBD has been shown to decrease TNFα expression and inhibit equilibrative nucleoside transporter 1 (ENT1) reuptake of adenosine in LPS treated primary microglia cells and retinas from LPS treated rats [44] ( Table 1 ). The effect of CBD is primarily mediated through the activation of the A2A receptor, the most abundant adenosine receptor in the rat retina, as a result of CBD-induced inhibition of adenosine reuptake [44]. These results suggest that CBD may be a good anti-inflammatory agent for endotoxin-induced retinal damage.


Excitotoxicity is implicated in glaucoma as a result of elevated levels of the excitatory neurotransmitter glutamate in the retina [45, 46]. Over-stimulation of a glutamate receptor, such as the N-methyl-D-aspartate (NMDA) receptor, a sodium and calcium permeable channel, results in excess intracellular calcium. Increased intracellular calcium is cytotoxic, as well as induces release of more glutamate, cellular swelling, and eventually cell death [47, 48]. The process of excitotoxicity also involves the activation of nitric oxide (NO) synthase and accumulation of NO and superoxide. Overproduction of these oxygen species produces oxidative stress leading to lipid peroxidation, mitochondrial dysfunction, DNA damage and eventually, cell death [46, 49].

One method to measure oxidative stress is through peroxynitrite/nitrotyrosine formation and lipid peroxidation [50]. Peroxynitrite is a product of a superoxide reaction primarily responsible for oxide- and superoxide-dependent cytotoxicity. It is highly unstable, highly reactive and difficult to measure, therefore the presence of peroxynitrite is measured by levels of nitrotyrosine which is formed by nitration of protein-bound tyrosine [50].

In a rat model of neurotoxicity, intravitreal injection of NMDA induces nitrite/nitrate accumulation, lipid peroxidation, nitrotyrosine production, apoptosis, and inner retinal neuronal loss [51]. CBD treatment decreased levels of peroxynitrite/nitrotyrosine production, prevented neurotoxicity, and lowered the amount of apoptosis ( Table 1 ). The neuroprotective effect of CBD was dependent upon blockage of nitrotyrosine formation [51]. The retinal antioxidant and neuroprotective effects of CBD in the rat model of retinal excitotoxicity suggest that it may be beneficial as a neuroprotectant for the treatment of ocular conditions such as glaucoma.

Diabetic retinopathy

Globally, diabetic retinopathy is a major cause of vision loss. Oxidative stress, caused by reactive oxygen species, is one of the main factors in diabetic retinopathy progression [52]. The retina is particularly sensitive to reactive oxygen species because it is the most metabolically active tissue in the body and therefore easily affected by diabetes [52]. Diabetic retinopathy is characterized by retinal hypoxia, increased retinal vascular permeability, and retinal angiogenesis [52, 53]. These processes cause the death of inner retinal and ganglion cells and ultimately, vision loss.

Inflammation is another important component in diabetic retinopathy. Hyperglycemia triggers the release of proinflammatory cytokines such as vascular endothelial growth factor (VEGF), Intercellular adhesion molecule-1 (ICAM-1), and Tumor necrosis factor α (TNFα) [54, 55]. The elevation of these proinflammatory cytokines further facilitates pathologic changes in diabetic retinopathy as a result of neovascularization by VEGF, leukocyte adhesion and transmigration by ICAM-1 and further release of cytokines by TNFα [53–55]. Research shows that VEGF, ICAM-1, and TNFα are upstream regulators of proinflammatory and oxidative stress pathways which activate p38 MAP kinase [55]. Activation of p38 MAP kinase has been reported in diabetic retinas in high glucose conditions and is implicated in retinal ganglion cell apoptotic death [56–58]. In addition, p38 MAP kinase activity is linked to vascular hyperpermeability in diabetic retinas [55].

See also  Charlotte's Web CBD Oil For Sleep

One report assessed the therapeutic potential of CBD in a streptozotocin-induced diabetic rat model through measurement of oxidative stress and proinflammatory cytokines [58] ( Table 1 ). The antibiotic streptozotocin (produced by Streptomyces achromogens) induces type 1 diabetes through partial destruction of the pancreatic β cells after a single injection. In the streptozotocin-induced diabetic rat model there were increases in oxidative stress, retinal neuronal cell death, and vascular hyperpermeability associated with increased levels of VEGF, ICAM-1, TNFα, and activation of p38 MAP kinase [58]. Importantly, CBD decreased reactive oxygen species (ROS) formation, suppressed VEGF, ICAM-1, and TNF-α expression, and prevented activation of p38 MAP kinase [58]. Taken together, these findings suggest that CBD is a potential therapeutic agent for diabetic retinopathy capable of protecting against inflammation, retinal neuronal cell death, and preservation of the blood-retinal barrier.

Intraocular pressure

An estimated 3 million Americans have glaucoma, a major cause of irreversible blindness with no cure [59, 60]. Even with therapeutic intervention, approximately 10% of those diagnosed still experience vision loss [59, 60]. Although not always elevated, intraocular pressure (IOP) is currently the only treatable factor of the disease. Drug therapies such as prostaglandin analogs, β-adrenergic antagonists, cholinergic agonists, α2-adrenergic agonists, and carbonic anhydrase inhibitors are used either independently or in combination, to reduce ocular pressure [61, 62]. In 2018, the FDA approved Rhopressa, a Rho kinase inhibitor, as a novel IOP-lowering drug [61, 62]. These IOP-lowering drugs work to decrease aqueous humor production in the ciliary body and/or increase aqueous humor drainage through the trabecular meshwork or the uveoscleral pathway [61, 62]. For patients that do not respond to the above drugs or drug combinations, or patients developed tolerance to existing drugs, novel medications are needed to lower IOP and to prevent future optic nerve damage and vision loss associated with glaucoma.

THC is well documented and is consistently shown to decrease IOP [63–69]. However, the effect of CBD on IOP is much more controversial ( Table 2 ). So far, nine independent reports have published regarding the effects of CBD on IOP: Four reports indicate that CBD has no effect on IOP [70–73], three reports demonstrate that CBD decreases IOP [74–76], and two reports show an CBD-induced increase in IOP [63, 64].

A recently published study in mice showed an increase in IOP at 1 and 4 hours post topical application of CBD at a 5 mM dose [63]. Interestingly, CBD significantly decreased IOP 1 hour post treatment in CB1 knockout mice and the effect is attributed to GPR18 activation [63]. This article was cited by the American academy of ophthalmology with the headline “CBD oil may worsen glaucoma” [77]. Altogether, the literature does not conclusively show whether CBD increases, decreases, or causes no change to IOP.

Molecular targets and mechanisms for CBD-induced ocular effects

CBD has numerous targets in different categories such as G protein-coupled receptors, enzymes, nuclear receptors, ligand-gated ion channels, transient receptor potential (TRP) channels, and potentially others [18]. Many of these CBD targets are expressed in the eye. This section of the review focuses on the effects of CBD on these molecular targets in the eye ( Table 3 ). It is important to point out that systemic CBD administration may result in CBD metabolites that act through molecular mechanisms different from those of CBD itself.

Table 3.

Molecular targets and mechanisms for CBD-induced ocular effects

Ref Target Tissue/ Cells CBD route CBD effect CBD mechanism
[39] 5-HT1A Mouse cornea topical ↓ pain score
↓neutrophil infiltration
5-HT1A agonist, effect blocked by 5-HT1A antagonist WAY100635
[44] ENT1
Rat retinal microglia intraperitoneal ↓ adenosine reuptake
↓ TNFα expression
ENT1 inhibitor, reuptake inhibition blocked by ENT1 inhibitor NBMPR
Activate A2A indirectly, effect blocked by A2A antagonist ZM241385
[63] GPR18
Wild-type and CBl knockout mice topical ↑IOP in wild-type mice
↓IOP in CB1 knockout mice
CB1 negative allosteric modulator GPR18 agonist, effect blocked by GPR18 antagonist 01918
[92] GPR55 Mouse retinal explant cultures intravitreal ↓ growth cone size
↓filopodia number
GPR55 antagonist, effects absent in GPR55 knockout mice
[98] TRPV2 Porcine RPE cells In vitro ↑ intracellular Ca 2+ TRPV2 agonist, effect reduced by TRPV2 blocker SKF-96365
[99] TRPV2 ARPE-19 cells In vitro ↑ current density
↑ membrane conductance
TRPV2 agonist, effect blocked by TRPV2 blocker SKF-96365

Serotonin receptor

Thapa et al. showed that CBD can reduce the pain score and neutrophil infiltration in mice after corneal cauterization and capsaicin challenge and this effect is mediated, in part, by 5-HT1A agonism [39] ( Table 3 ). The hypoalgesic and anti-inflammatory effects of CBD seen in wild-type mice were still present in CB2 knockout mice, as well as CB2 knockout mice pretreated with AM251, a CB1 selective antagonist. These results suggest that the hypoalgesic and anti-inflammatory effects of CBD are not mediated by CB1 or CB2 receptors. Moreover, the effects of CBD were blocked in wild-type mice treated with WAY100635, a 5-HT1A receptor antagonist. These data demonstrate that the effect of CBD on corneal hyperalgesia inflammation is mediated by 5-HT1A agonism [39]. In support of the findings of Thapa et al. in the eye [39], CBD has been shown to be a 5-HT1A agonist in other tissues as well [78, 79].

Equilibrative nucleoside transporter 1 and A2A adenosine receptor

CBD has been shown to inhibit TNF-α response to LPS stimulation by inhibiting adenosine reuptake in retinal microglia via adenosine equilibrative nucleoside transporter 1 (ENT1) [44] ( Table 3 ). Cells that were pre-treated with CBD showed inhibition of LPS-induced release of TNF-α. The inhibition of TNF-α release was not further enhanced nor inhibited by pretreatment of NBMPR, an ENT1 selective inhibitor [44]. These results suggest that CBD competes with NBMPR for ENT1. Furthermore, CBD inhibited TNF-α in the presence of A1A adenosine antagonist CPX, whereas the effect of CBD was blocked by pre-treatment with A2A adenosine receptor antagonist ZM241385. When CBD and adenosine were co-administered, TNF-α release was greatly reduced showing a synergistic effect that is greater than when either compound was administered alone [44]. In sum, Liou et al. showed that CBD inhibits adenosine reuptake through ENT1, which indirectly causes the enhanced activation of A2A adenosine receptor and reduction of TNF-α release [44]. The effects of CBD on ENT1 and adenosine receptors are corroborated by reports in rat and mouse striatal terminals [80] and in EOC-20 murine microglial cells [81].

CB1 and GPR18

CB1 is a well-established cannabinoid receptor and CBD has been shown to be a negative allosteric modulator of CB1 [82]. CB1 is expressed in the anterior of the eye in the ciliary and corneal epithelium and trabecular meshwork, as well as the posterior of the eye in the retina [83, 84]. GPR18 is a recently identified putative cannabinoid receptor and researchers have shown that GPR18 is activated by N-arachidonoyl glycine, a carboxylic metabolite of the endocannabinoid anandamide [85]. GPR18 was further characterized in 2012 when anandamide and THC, in addition to N-arachidonoyl glycine, were shown to stimulate GPR18-mediated ERK1/2 phosphorylation [86]. Furthermore, CBD was shown to be a biased agonist for GPR18 in 2014 [87]. GPR18 is widely expressed in the ocular tissues, specifically in the ciliary and corneal epithelium, trabecular meshwork, and retina [88, 89].

To date a single paper has reported on the effect of CBD at both CB1 and GPR18 receptors in the eye ( Table 3 ). Miller et al. showed that CBD increases IOP in wild-type mice but decreases IOP in CB1 knockout mice [63]. No CBD effect on IOP was seen in CB1 knockout mice pretreated with O-1918, a GPR18 antagonist. This report highlights that CBD has independent actions both on CB1 as a negative allosteric modulator to raise IOP and on GPR18 as an agonist to lower IOP [63].


GPR55 is an orphan receptor activated by lysophosphatidylinositol (LPI) [90]. GPR55 is frequently referred to as a putative cannabinoid receptor because it is activated by phytocannabinoids, endocannabinoids, and synthetic cannabinoids [91]. CBD has been shown to be a GPR55 antagonist [91].

One group studied the involvement of GPR55 in the retina during development [92]. Growth cones are regions of developing neurites which facilitate axon growth by extending actin filaments into filopodia. Filopodia guide the growth cone in response to chemical or electrical stimulus. Cherif et al. found that GPR55 is expressed in growth cones during development, and its activity regulates morphology and growth [92]. Mouse embryonic neurons from GPR55 knockout mice showed smaller growth cones, fewer filopodia, and decreased outgrowth compared to neurons from wild type mice. Furthermore, retinal ganglion cells from wild type mice treated with GPR55 agonists LPI and O-1602 showed increased growth cone size and filopodia number and demonstrated chemoattraction. In contrast, CBD, a GPR55 antagonist, decreased growth cone size and filopodia number, and induced chemorepulsion ( Table 3 ). GPR55 ligands had no effects in embryonic neurons from GPR55 knockout mice [92]. These data suggest that CBD inhibits growth cone activity and axonal growth in the retinain this experimental model.

TRPV Channels

Transient receptor potential (TRP) ion channels are trans-membrane proteins involved in a wide range of chemical and physical sensations including smell, taste, vision, temperature, and pressure [93]. CBD has been shown to be an agonist of TRPV 1, 2, 3, 4 and TRPA1 [94, 95]. TRPV channels are implicated in the activation and desensitization of inflammatory processes and chronic pain [96, 97]. Therefore, CBD may be a desirable therapeutic for chronic pain because it can activate and desensitize the TRPV channels [94, 95].

One group investigated the calcium influx activity of TRPV2 channel activity in porcine retinal pigment epithelial (RPE) cells [98]. They found that CBD strongly increased intracellular Ca 2+ levels ( Table 3 ). In the presence of TRPV2 channel inhibitor > SKF96365, CBD-mediated Ca 2+ intracellular increase was partially blocked [98]. These data suggest that CBD modulation of Ca 2+ involves TRPV2, as well as other TRPV channels that are not blocked by > SKF96365.

Another study looked at TRPV2 channel regulation in ARPE-19, a human RPE cell line [99]. ARPE-19 cells preincubated with CBD demonstrated a 3-fold increase in current density, an effect that was blocked by > SKF96365 ( Table 3 ). CBD also increased membrane conductance and TRPV2 surface expression. TRPV2 are heat sensitive ion channels and heat further increased the CBD mediated increase in membrane conductance. Furthermore, the PI3 kinase inhibitor LY294002 abolished the effect of CBD on membrane conductance and surface expression. These data led to the conclusion that CBD acts through activation of TRPV2 and a PI3 kinase dependent pathway to increase cell surface expression of TRPV2 channels [99].


Challenges of using CBD as an ocular therapeutic agent

There are several challenges for practical applications of CBD as an ocular therapeutic agent. Some of these challenges include poor bioavailability, difficulty in topical delivery, and short duration of action.


An FDA approved drug containing CBD is administered orally [23]. However, oral administration is inefficient due to poor bioavailability of CBD. Low bioavailability of CBD requires that it to be administered at high doses to achieve therapeutic effects. However, a consequence of high dosing is an increase in adverse side effects [100, 101]. The potential adverse effects of CBD include drowsiness, dry mouth, reduced appetite, nausea, and gastrointestinal issues. The most notable serious adverse side effects of CBD are abnormal liver function tests (elevated liver enzymes) [102].

One major factor contributing to the poor bioavailability of CBD is its extensive first pass metabolism [100, 101]. Another factor limiting CBD bioavailability is its hydrophobicity. The chemical structure of CBD contains aromatic rings and an aliphatic side chain, which make it a highly hydrophobic molecule. The hydrophobicity of CBD limits its solubility in water and makes diffusion across aqueous barriers a rate limiting step for diffusion and absorption [100, 101].

Topical delivery

Therapeutic treatments for ocular conditions are frequently administered orally or topically to the eye. Extensive first pass metabolism of CBD prevents a significant amount of drug reaching the eye from oral administration. Therefore, topical administration of CBD is desired.

Developing an ocular topical delivery system is a difficult task. The eye contains sophisticated protective mechanisms and physical barriers to prevent foreign material from entering, which includes the multi-layered cornea and pre-corneal tear film. The alternating lipophilic and hydrophilic nature of the cornea makes ocular drug delivery exceptionally difficult. As a result, less than 5% of drugs applied topically enter the eye [103–105].

CBD is highly hydrophobic and insoluble in water. Studies applying CBD topically used non-aqueous vehicles for delivery [39, 63, 75]. Previously, CBD was topically delivered to the eye in mineral oil, sesame oil, soybean oil, and a soya oil/water emulsion, Tocrisolve [39, 63, 75]. In one report, CBD delivered in mineral oil produced an IOP-lowering effect whilst the effect is absent in sesame oil [75]. With Tocrisolve as a vehicle, Miller et al. [63] demonstrated that a high dose of CBD increases IOP in wildtype mice, but decreases IOP in CB1 knockout mice. This indicates that at large doses CBD produces off-target effects which are detrimental. Since CBD has at least 65 targets [18], off-target effects of CBD at high doses are very likely. These results highlight a critical need for a vehicle with high ocular permeation to administer CBD in a therapeutically relevant dose.

Duration of action

Another difficulty associated with CBD as an ocular therapeutic is its short duration of action, e.g., in lowering IOP. One report indicated CBD decreased IOP 1–2 hours after topical application to rabbit eyes, and IOP-lowering effects of CBD lasted for up to 5 hours after intravenous administration [75]. In another study, CBD required constant infusion via minipump to induce a decrease in IOP [76]. A short duration of action implies that CBD needs to be applied multiple times throughout the day to maintain therapeutic effects. However, patient compliance will be worsened with frequent dosing. In contrast, greater patient compliance is observed in prescribed medications with once daily dosing [106].

Future directions

So far, CBD has been studied preclinically for its therapeutic potentials in glaucoma, diabetic retinopathy, and corneal injury. Considering its anti-inflammatory, antioxidant, and neuroprotective properties, in the future it would be worthwhile to explore the potential of CBD in treating other ocular conditions, such as uveitis and age-related macular degeneration.

See also  Og Kush CBD Oil Effects

It is important to elucidate the mechanisms of action of CBD in the eye. As highlighted in this review, there are multiple molecular targets of CBD in the eye. Understanding which targets are responsible for the therapeutic and adverse effects of CBD is critical for its effective and safe use as an ocular therapeutic agent.

Finally, in the future, solving the puzzles of dosing and proper formulation for efficient, prolonged topical delivery will usher CBD forth for numerous potential ocular therapeutic indications.


The authors acknowledge the support of Department of Pharmacology and Toxicology, University of Louisville School of Medicine.

Funding Sources

While writing this manuscript, AA is supported in part by NIH grant T32 ES011564; MD is supported in part by NIH grant R25 CA134283; LS is supported in part by University of Louisville Integrated Programs in Biomedical Sciences (IPIBS) Fellowship; and ZHS is supported in part by NIH grant EY030186.


Statement of Ethics

The authors have no ethical conflicts to disclose.

The authors have no conflicts of interest to declare.


1. Brand EJ, Zhao Z: Cannabis in Chinese Medicine: Are Some Traditional Indications Referenced in Ancient Literature Related to Cannabinoids? Front Pharmacol 2017; 8 :108. [PMC free article] [PubMed] [Google Scholar]

2. Pomelo D: The molecular logic of endocannabinoid signalling . Nat Rev Neurosci 2003; 4 :873–884. [PubMed] [Google Scholar]

3. O’Shaughnessy WB, Calcutta MD: New remedy for tetanus and other convulsive disorders . Boston Med Surg J 1840:153–155. [Google Scholar]

4. Convention USP: Pharmacopoeia of the United States , ed 3. Philadelphia, PA, Lippincott, Grambo & Company, 1851. [Google Scholar]

5. Gieringer DH: The Origins of Cannabis Prohibition in California . Contemp Drug Probl 1999; 26 :237–288. [Google Scholar]

11. Turner CE, Elsohly MA, Boeren EG: Constituents of Cannabis sativa L. XVII. A review of the natural constituents . J Nat Prod 1980; 43 :169–234. [PubMed] [Google Scholar]

12. ElSohly AM, Gul W: Constituents of Cannabis Sativa; in Pertwee R (ed): Handbook of Cannabis . Oxford, UK, Oxford University Press, 2014. [Google Scholar]

13. Mudge EM, Murch SJ, Brown PN: Chemometric Analysis of Cannabinoids: Chemotaxonomy and Domestication Syndrome . Sci Rep 2018; 8 :13090. [PMC free article] [PubMed] [Google Scholar]

14. Adams R, Hunt M, Clark JH: Structure of Cannabidiol, a Product Isolated from the Marihuana Extract of Minnesota Wild Hemp. I . J Am Chem Soc 1940; 62 :196–200. [Google Scholar]

15. Mechoulam R, Shvo Y: Hashish. I. The structure of cannabidiol . Tetrahedron 1963; 19 :2073–2078. [PubMed] [Google Scholar]

16. Taura F, Morimoto S, Shoyama Y: Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid . J Biol Chem 1996; 271 :17411–17416. [PubMed] [Google Scholar]

17. Gaoni Y, Mechoulam R: Isolation, Structure, and Partial Synthesis of an Active Constituent of Hashish . J Am Chem Soc 1964; 86 :1646–1647. [Google Scholar]

18. Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ: Molecular Targets of Cannabidiol in Neurological Disorders . Neurotherapeutics 2015; 12 :699–730. [PMC free article] [PubMed] [Google Scholar]

22. Badowski ME, Yanful PK: Dronabinol oral solution in the management of anorexia and weight loss in AIDS and cancer . Ther Clin Risk Manag 2018; 14 :643. [PMC free article] [PubMed] [Google Scholar]

26. Barnes MP: Sativex®: clinical efficacy and tolerability in the treatment of symptoms of multiple sclerosis and neuropathic pain . Expert Opin Pharmacother 2006; 7 :607–615. [PubMed] [Google Scholar]

27. Atalay S, Jarocka-Karpowicz I, Skrzydlewska E: Antioxidative and Anti-Inflammatory Properties of Cannabidiol . Antioxidants (Basel) 2019; 9 :21. [Google Scholar]

28. Hampson AJ, Grimaldi M, Lolic M, Wink D, Rosenthal R, Axelrod J: Neuroprotective antioxidants from marijuana . Ann N Y Acad Sci 2000; 899 :274–282. [PubMed] [Google Scholar]

29. Paolino MC, Ferretti A, Papetti L, Villa MP, Parisi P: Cannabidiol as potential treatment in refractory pediatric epilepsy . Expert Rev Neurother 2016; 16 :17–21. [PubMed] [Google Scholar]

30. Leo A, Russo E, Elia M: Cannabidiol and epilepsy: Rationale and therapeutic potential . Pharmacol Res 2016; 107 :85–92. [PubMed] [Google Scholar]

31. Campos AC, Fogaça MV, Sonego AB, Guimarães FS: Cannabidiol, neuroprotection and neuropsychiatric disorders . Pharmacol Res 2016; 112 :119–127. [PubMed] [Google Scholar]

32. Kis B, Ifrim FC, Buda V, Avram S, Pavel IZ, Antal D, Paunescu V, Dehelean CA, Ardelean F, Diaconeasa Z, Soica C, Danciu C: Cannabidiol-from Plant to Human Body: A Promising Bioactive Molecule with Multi-Target Effects in Cancer . Int J Mol Sci 2019;20 [PMC free article] [PubMed] [Google Scholar]

33. Stanley CP, Hind WH, O’Sullivan SE: Is the cardiovascular system a therapeutic target for cannabidiol? Br J Clin Pharmacol 2013; 75 :313–322. [PMC free article] [PubMed] [Google Scholar]

34. Passani A, Posarelli C, Sframeli AT, Perciballi L, Pellegrini M, Guidi G, Figus M: Cannabinoids in Glaucoma Patients: The Never-Ending Story . J Clin Med 2020; 9 :3978. [PMC free article] [PubMed] [Google Scholar]

35. Pena J, Jimenez C, Schmidt J: Do cannabinoids play a role in the control of glaucoma? Medwave 2018; 18 :e7144. [PubMed] [Google Scholar]

36. Schwitzer T, Schwan R, Angioi-Duprez K, Giersch A, Laprevote V: The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications . Neural Plast 2016; 2016 :2916732. [PMC free article] [PubMed] [Google Scholar]

37. Kokona D, Georgiou PC, Kounenidakis M, Kiagiadaki F, Thermos K: Endogenous and Synthetic Cannabinoids as Therapeutics in Retinal Disease . Neural Plast 2016; 2016 :8373020. [PMC free article] [PubMed] [Google Scholar]

38. Belmonte C, Acosta MC, Merayo-Lloves J, Gallar J: What Causes Eye Pain? Curr Ophthalmol Rep 2015; 3 :111–121. [PMC free article] [PubMed] [Google Scholar]

39. Thapa D, Cairns EA, Szczesniak AM, Toguri JT, Caldwell MD, Kelly MEM: The Cannabinoids Delta(8) THC, CBD, and HU-308 Act via Distinct Receptors to Reduce Corneal Pain and Inflammation . Cannabis Cannabinoid Res 2018; 3 :11–20. [PMC free article] [PubMed] [Google Scholar]

40. Rashid K, Akhtar-Schaefer I, Langmann T: Microglia in Retinal Degeneration . Front Immunol 2019; 10 :1975. [PMC free article] [PubMed] [Google Scholar]

41. Wang AL, Albert C, Lau LT, Lee C, Tso MO: Minocycline inhibits LPS-induced retinal microglia activation . Neurochem Int 2005; 47 :152–158. [PubMed] [Google Scholar]

42. Hasko G, Pacher P, Vizi ES, Illes P: Adenosine receptor signaling in the brain immune system . Trends Pharmacol Sci 2005; 26 :511–516. [PMC free article] [PubMed] [Google Scholar]

43. Noji T, Takayama M, Mizutani M, Okamura Y, Takai H, Karasawa A, Kusaka H: KF24345, an adenosine uptake inhibitor, suppresses lipopolysaccharide-induced tumor necrosis factor-alpha production and leukopenia via endogenous adenosine in mice . J Pharmacol Exp Ther 2002; 300 :200–205. [PubMed] [Google Scholar]

44. Liou GI, Auchampach JA, Hillard CJ, Zhu G, Yousufzai B, Mian S, Khan S, Khalifa Y: Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor . Invest Ophthalmol Vis Sci 2008; 49 :5526–5531. [PMC free article] [PubMed] [Google Scholar]

45. Dreyer EB: A proposed role for excitotoxicity in glaucoma . J Glaucoma 1998; 7 :62–67. [PubMed] [Google Scholar]

46. Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA: Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma . Arch Ophthalmol 1996; 114 :299–305. [PubMed] [Google Scholar]

47. Choi DW: Glutamate neurotoxicity and diseases of the nervous system . Neuron 1988; 1 :623–634. [PubMed] [Google Scholar]

48. Waxman EA, Lynch DR: N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease . Neuroscientist 2005; 11 :37–49. [PubMed] [Google Scholar]

49. Coyle JT, Puttfarcken P: Oxidative stress, glutamate, and neurodegenerative disorders . Science 1993; 262 :689–695. [PubMed] [Google Scholar]

50. Misko TP, Highkin MK, Veenhuizen AW, Manning PT, Stern MK, Currie MG, Salvemini D: Characterization of the cytoprotective action of peroxynitrite decomposition catalysts . J Biol Chem 1998; 273 :15646–15653. [PubMed] [Google Scholar]

51. El-Remessy AB, Khalil IE, Matragoon S, Abou-Mohamed G, Tsai NJ, Roon P, Caldwell RB, Caldwell RW, Green K, Liou GI: Neuroprotective effect of (−)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite . Am J Pathol 2003; 163 :1997–2008. [PMC free article] [PubMed] [Google Scholar]

52. Li C, Miao X, Li F, Wang S, Liu Q, Wang Y, Sun J: Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy . Oxid Med Cell Longev 2017; 2017 :9702820. [PMC free article] [PubMed] [Google Scholar]

53. Aiello LP, Wong JS: Role of vascular endothelial growth factor in diabetic vascular complications . Kidney Int Suppl 2000; 77 :S113–119. [PubMed] [Google Scholar]

54. Kamiuchi K, Hasegawa G, Obayashi H, Kitamura A, Ishii M, Yano M, Kanatsuna T, Yoshikawa T, Nakamura N: Intercellular adhesion molecule-1 (ICAM-1) polymorphism is associated with diabetic retinopathy in Type 2 diabetes mellitus . Diabet Med 2002; 19 :371–376. [PubMed] [Google Scholar]

55. Semeraro F, Cancarini A, dell’Omo R, Rezzola S, Romano MR, Costagliola C: Diabetic Retinopathy: Vascular and Inflammatory Disease . J Diabetes Res 2015; 2015 :582060. [PMC free article] [PubMed] [Google Scholar]

56. Igarashi M, Wakasaki H, Takahara N, Ishii H, Jiang ZY, Yamauchi T, Kuboki K, Meier M, Rhodes CJ, King GL: Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways . J Clin Invest 1999; 103 :185–195. [PMC free article] [PubMed] [Google Scholar]

57. Purves T, Middlemas A, Agthong S, Jude EB, Boulton AJ, Fernyhough P, Tomlinson DR: A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy . FASEB J 2001; 15 :2508–2514. [PubMed] [Google Scholar]

58. El-Remessy AB, Al-Shabrawey M, Khalifa Y, Tsai NT, Caldwell RB, Liou GI: Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes . Am J Pathol 2006; 168 :235–244. [PMC free article] [PubMed] [Google Scholar]

59. Phu J, Agar A, Wang H, Masselos K, Kalloniatis M: Management of open-angle glaucoma by primary eye-care practitioners: toward a personalised medicine approach . Clin Exp Optom 2021; 104 :367–384. [PubMed] [Google Scholar]

60. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S: Glaucoma . Lancet 2017; 390 :2183–2193. [PubMed] [Google Scholar]

61. Shalaby WS, Shankar V, Razeghinejad R, Katz LJ: Current and new pharmacotherapeutic approaches for glaucoma . Expert Opin Pharmacother 2020; 21 :2027–2040. [PubMed] [Google Scholar]

62. Lu LJ, Tsai JC, Liu J: Focus: Drug Development: Novel Pharmacologic Candidates for Treatment of Primary Open-Angle Glaucoma . Yale J Biol med 2017; 90 :111–118. [PMC free article] [PubMed] [Google Scholar]

63. Miller S, Daily L, Leishman E, Bradshaw H, Straiker A: Delta9-Tetrahydrocannabinol and Cannabidiol Differentially Regulate Intraocular Pressure . Invest Ophthalmol Vis Sci 2018; 59 :5904–5911. [PMC free article] [PubMed] [Google Scholar]

64. Tomida I, Azuara-Blanco A, House H, Flint M, Pertwee RG, Robson PJ: Effect of sublingual application of cannabinoids on intraocular pressure: a pilot study . J Glaucoma 2006; 15 :349–353. [PubMed] [Google Scholar]

65. Crawford WJ, Merritt JC: Effects of tetrahydrocannabinol on arterial and intraocular hypertension . Int J Clin Pharmacol Biopharm 1979; 17 :191–196. [PubMed] [Google Scholar]

66. Cooler P, Gregg JM: Effect of delta-9-tetrahydrocannabinol on intraocular pressure in humans . South Med J 1977; 70 :951–954. [PubMed] [Google Scholar]

67. Colasanti BK, Powell SR, Craig CR: Intraocular pressure, ocular toxicity and neurotoxicity after administration of delta 9-tetrahydrocannabinol or cannabichromene . Exp Eye Res 1984; 38 :63–71. [PubMed] [Google Scholar]

68. Fischer KM, Ward DA, Hendrix DV: Effects of a topically applied 2% delta-9-tetrahydrocannabinol ophthalmic solution on intraocular pressure and aqueous humor flow rate in clinically normal dogs . Am J Vet Res 2013; 74 :275–280. [PubMed] [Google Scholar]

69. Purnell WD, Gregg JM: Delta(9)-tetrahydrocannabinol,, euphoria and intraocular pressure in man . Ann Ophthalmol 1975; 7 :921–923. [PubMed] [Google Scholar]

70. Waller CW, Benigni DA, Harland E, Bedford JA, Murphy JC, ElSohly MA: Cannabinoids in Glaucoma III: The Effects of Different Cannabinoids on Intraocular Pressure in the Monkey , in Agurell S, et al. (eds): The Cannabinoids: Chemical, Pharmacologic, and Therapeutic Aspects 1984, pp 871–880. [Google Scholar]

71. Liu JH, Dacus AC: Central nervous system and peripheral mechanisms in ocular hypotensive effect of cannabinoids . Arch Ophthalmol 1987; 105 :245–248. [PubMed] [Google Scholar]

72. Green K, Symonds CM, Oliver NW, Elijah RD: Intraocular pressure following systemic administration of cannabinoids . Curr Eye Res 1982; 2 :247–253. [PubMed] [Google Scholar]

73. ElSohly MA, Harland EC, Benigni DA, Waller CW: Cannabinoids in glaucoma II: the effect of different cannabinoids on intraocular pressure of the rabbit . Curr Eye Res 1984; 3 :841–850. [PubMed] [Google Scholar]

74. Perez-reyes M, Wagner D, Wall ME, Davis KH: Intravenous administration of cannabinoids and intraocular pressure, in: Braude MC and Szara S (eds): The Pharmacology of Marihmana , Raven, New York, 1976, pp. 829–832. [Google Scholar]

75. Green K, Wynn H, Bowman KA: A comparison of topical cannabinoids on intraocular pressure . Exp Eye Res 1978; 27 :239–246. [PubMed] [Google Scholar]

76. Colasanti BK, Brown RE, Craig CR: Ocular hypotension, ocular toxicity, and neurotoxicity in response to marihuana extract and cannabidiol . Gen Pharmacol 1984; 15 :479–484. [PubMed] [Google Scholar]

77. Shelton B: CBD Oil May Worsen Glaucoma . American Academy of Ophthalmology, 2019. URL: https://www.aao.org/eye-health/news/cbd-oil-may-worsen-glaucoma. [Google Scholar]

78. Russo EB, Burnett A, Hall B, Parker KK: Agonistic properties of cannabidiol at 5-HT1a receptors . Neurochem Res 2005; 30 :1037–1043. [PubMed] [Google Scholar]

79. De Gregorio D, McLaughlin RJ, Posa L, Ochoa-Sanchez R, Enns J, Lopez-Canul M, Aboud M, Maione S, Comai S, Gobbi G: Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain . Pain 2019; 160 :136–150. [PMC free article] [PubMed] [Google Scholar]

80. Pandolfo P, Silveirinha V, dos Santos-Rodrigues A, Venance L, Ledent C, Takahashi RN, Cunha RA, Kofalvi A: Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum . Eur J Pharmacol 2011; 655 :38–45. [PubMed] [Google Scholar]

81. Carrier EJ, Auchampach JA, Hillard CJ: Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression . Proc Natl Acad Sci U S A 2006; 103 :7895–7900. [PMC free article] [PubMed] [Google Scholar]

82. Laprairie R, Bagher A, Kelly M, Denovan-Wright E: Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor . Br J Pharmacol 2015; 172 :4790–4805. [PMC free article] [PubMed] [Google Scholar]

83. Straiker AJ, Maguire G, Mackie K, Lindsey J: Localization of cannabinoid CB1 receptors in the human anterior eye and retina . Invest Ophthalmol Vis Sci 1999; 40 :2442–2448. [PubMed] [Google Scholar]

84. Stamer WD, Golightly SF, Hosohata Y, Ryan EP, Porter AC, Varga E, Noecker RJ, Felder CC, Yamamura HI: Cannabinoid CB(1) receptor expression, activation and detection of endogenous ligand in trabecular meshwork and ciliary process tissues . Eur J Pharmacol 2001; 431 :277–286. [PubMed] [Google Scholar]

85. Kohno M, Hasegawa H, Inoue A, Muraoka M, Miyazaki T, Oka K, Yasukawa M: Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18 . Biochem Biophys Res Commun 2006; 347 :827–832. [PubMed] [Google Scholar]

86. McHugh D, Page J, Dunn E, Bradshaw HB: Delta(9) -Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells . Br J Pharmacol 2012; 165 :2414–2424. [PMC free article] [PubMed] [Google Scholar]

See also  Best CBD Oil For Dogs

87. Console-Bram L, Brailoiu E, Brailoiu GC, Sharir H, Abood ME: Activation of GPR18 by cannabinoid compounds: a tale of biased agonism . Br J Pharmacol 2014; 171 :3908–3917. [PMC free article] [PubMed] [Google Scholar]

88. Caldwell MD, Hu SS, Viswanathan S, Bradshaw H, Kelly ME, Straiker A: A GPR18-based signalling system regulates IOP in murine eye . Br J Pharmacol 2013; 169 :834–843. [PMC free article] [PubMed] [Google Scholar]

89. MacIntyre J, Dong A, Straiker A, Zhu J, Howlett SE, Bagher A, Denovan-Wright E, Yu DY, Kelly ME: Cannabinoid and lipid-mediated vasorelaxation in retinal microvasculature . Eur J Pharmacol 2014; 735 :105–114. [PubMed] [Google Scholar]

90. Alhouayek M, Masquelier J, Muccioli GG: Lysophosphatidylinositols, from Cell Membrane Constituents to GPR55 Ligands . Trends Pharmacol Sci 2018; 39 :586–604. [PubMed] [Google Scholar]

91. Morales P, Jagerovic N: Advances Towards The Discovery of GPR55 Ligands . Curr Med Chem 2016; 23 :2087–2100. [PubMed] [Google Scholar]

92. Cherif H, Argaw A, Cecyre B, Bouchard A, Gagnon J, Javadi P, Desgent S, Mackie K, Bouchard JF: Role of GPR55 during Axon Growth and Target Innervation . eNeuro 2015; DOI: 10.1523/ENEURO.0011-15.2015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Montell C: The TRP superfamily of cation channels . Sci STKE 2005; 2005 :re3. [PubMed] [Google Scholar]

94. Muller C, Morales P, Reggio PH: Cannabinoid Ligands Targeting TRP Channels . Front Mol Neurosci 2018; 11 :487. [PMC free article] [PubMed] [Google Scholar]

95. De Petrocellis L, Orlando P, Moriello AS, Aviello G, Stott C, Izzo AA, Di Marzo V: Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation . Acta Physiol (Oxf) 2012; 204 :255–266. [PubMed] [Google Scholar]

96. Hung CY, Tan CH: TRP Channels in Nociception and Pathological Pain . Adv Exp Med Biol 2018; 1099 :13–27. [PubMed] [Google Scholar]

97. Levine JD, Alessandri-Haber N: TRP channels: targets for the relief of pain . Biochim Biophys Acta 2007; 1772 :989–1003. [PubMed] [Google Scholar]

98. Barro-Soria R, Stindl J, Muller C, Foeckler R, Todorov V, Castrop H, Strauss O: Angiotensin-2-mediated Ca2+ signaling in the retinal pigment epithelium: role of angiotensin-receptor-associated-protein and TRPV2 channel . PLoS One 2012; 7 :e49624. [PMC free article] [PubMed] [Google Scholar]

99. Reichhart N, Keckeis S, Fried F, Fels G, Strauss O: Regulation of surface expression of TRPV2 channels in the retinal pigment epithelium . Graefes Arch Clin Exp Ophthalmol 2015; 253 :865–874. [PubMed] [Google Scholar]

100. Gottschling S, Ayonrinde O, Bhaskar A, Blockman M, D’Agnone O, Schecter D, Suarez Rodriguez LD, Yafai S, Cyr C: Safety Considerations in Cannabinoid-Based Medicine . Int J Gen Med 2020; 13 :1317–1333. [PMC free article] [PubMed] [Google Scholar]

101. Britch SC, Babalonis S, Walsh SL: Cannabidiol: pharmacology and therapeutic targets . Psychopharmacology (Berl) 2020; 238 :9–28. [PMC free article] [PubMed] [Google Scholar]

102. Chesney E, Oliver D, Green A, Sovi S, Wilson J, Englund A, Freeman TP, McGuire P: Adverse effects of cannabidiol: a systematic review and meta-analysis of randomized clinical trials . Neuropsychopharmacology 2020; 45 :1799–1806. [PMC free article] [PubMed] [Google Scholar]

103. Souza JG, Dias K, Pereira TA, Bernardi DS, Lopez RF: Topical delivery of ocular therapeutics: carrier systems and physical methods . J Pharm Pharmacol 2014; 66 :507–530. [PubMed] [Google Scholar]

104. Yellepeddi VK, Palakurthi S: Recent Advances in Topical Ocular Drug Delivery . J Ocul Pharmacol Ther 2016; 32 :67–82. [PubMed] [Google Scholar]

105. Tomida I, Pertwee RG, Azuara-Blanco A: Cannabinoids and glaucoma . Br J Ophthalmol 2004; 88 :708–713. [PMC free article] [PubMed] [Google Scholar]

106. Richter A, Anton SF, Koch P, Dennett SL: The impact of reducing dose frequency on health outcomes . Clin Ther 2003; 25 :2307–2335; discussion 2306. [PubMed] [Google Scholar]

Change in Refractive Error Associated With the Use of Cannabidiol Oil

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Cannabinoid (CBD) products have gained popularity since their legalization in 2018, causing a plethora of unregulated CBD products to be sold in the United States. These products are available in various combinations for topical and oral consumption, claiming credit for potentially improving various diseases. In this report, we present a newfound case reporting a shift in refraction that may be associated with the regular use of CBD oil supplements.

A 57-year-old woman with a history of diabetes mellitus type 2, hyperlipidemia, obstructive sleep apnea, with no change in medications, diet, or lifestyle was found to have a hyperopic shift in vision with the recent daily addition of CBD oil intake.

This case report highlights the possible association of CBD oil and vision changes after regular consumption of CBD oil in an otherwise stable patient. Further study is required to understand the mechanisms of CBD oil-associated shift in refractive error. Because the patient is diabetic and the refraction shift was hyperopic, other etiologies, such as un-noted lenticular change, cannot be ruled out. CBD products are unregulated and marketed in many mixed forms, and thus can cause unforeseen effects on susceptible individuals. This warrants Food and Drug Administration (FDA) regulation of such products and extensive research before considering them for therapeutic usage.


Cannabis, or marijuana, has been utilized in psychogenic therapy for hundreds of years. Over the past few decades, it particularly has a newfound use in pain medicine, neurology, oncology, gastroenterology, and ophthalmology [1-2]. Recently, cannabinoid (CBD) oil has been immensely used as supplements and in beverages after the passing of the Hemp Farming Act (HFA) in 2018, which legalized hemp-derived products in the United States. This has allowed commercial companies to produce and sell unregulated CBD oil products without US Food and Drug Administration (FDA) approval. Each product of CBD is potentially unregulated as an uncontrolled substance with varying concentrations, variance in the quality of hemp varieties, and lipid oxidation profiles [3]. Without regulation and medical guidance, CBD oil products can cause severe side effects [4]. We present an isolated case of a patient who reported gradual improvement in myopic vision after starting cannabidiol (CBD) oil for the past few weeks and reversal to original myopic refraction after the discontinuation of CBD oil. To our knowledge, this is the only case report that presents a hyperopic shift in association with cannabidiol oil intake in the English language ophthalmic literature.

Case presentation

A 57-year-old, white female presented to the optometry clinic with eye strain and a gradual decrease in her vision for the last three weeks. She reported her eye strain was somewhat relieved after she removed her glasses. Her medical history was remarkable for obstructive sleep apnea, hyperlipidemia, and polyneuropathy secondary to continued uncontrolled type 2 diabetes (most recent hemoglobin A1c = 12.8%), osteopenia, and restless legs syndrome. Her social history included cigarette smoking (seven cigarettes a day with a five-pack-year history). She denied the use of alcohol or recreational drugs. Her ocular history pertaining to trauma or any surgery was negative. Additionally, she noted having no other symptoms such as headache, dry eyes, double vision, vision loss, spots, or threads in her vision.

On examination, her visual acuity (VA) with her habitual glasses was 20/60 in the right eye (OD) and 20/70 in the left eye (OS), pin holed to 20/40 OD and 20/40 OS. The pupils were round and reactive to light OU, with no relative afferent pupillary defect. External examination, extraocular muscle movements, and counting finger visual field tests were normal. Her intraocular pressure was 16 mmHg in the right eye and 17 mmHg in the left eye, measured with a tonopen. The dilated fundus examination revealed rare cotton wool spots, microaneurysm, dot-blot hemorrhages, and vascular attenuation consistent with moderate, non-proliferative diabetic retinopathy in both eyes without any signs of macular edema (Figure ​ (Figure1). Her 1 ). Her optic cups appeared normal with no signs of glaucoma. Given her decrease in vision and clinical presentation of non-proliferative diabetic maculopathy, we decided to run a macular optical coherence tomography (OCT) scan (Figure ​ (Figure2). 2 ). The fovea showed a normal contour, no central macular edema, and an average central retinal thickness of 275 µM OD and 273 µM OS.

Figure 1

Color fundus photographs of the right eye (A) and left eye (B) with non-proliferative diabetic retinopathy

Cotton wool spot (thin arrow), dot blot, and exudates (thick arrow)

Figure 2

Fovea shows normal contour with no central edema; average central macula thickness of 275 µM OD and 273 µM OS

On refraction, her manifest refraction had shifted from her habitual of -2.25 D sphere to -0.75 D in the right eye and from a habitual of -2.00 D to -0.75 D sphere in the left eye. Her new corrected VA in the right eye was 20/25 and 20/25 in the left eye, and a new pair of prescription glasses were made. This new information of hyperopic shift led us to systemically review her medications for possible associations.

Her medications included multivitamins, dulaglutide, canagliflozin, sitagliptin-metformin, lisinopril, gabapentin, pramipexole, clotrimazole-betamethasone, cyclobenzaprine, glucosamine sulfate, zolpidem, cetirizine, ranitidine, and magnesium oxide. In addition to the above, over the past eight weeks, she had started taking 750 mg of peppermint-flavored Full Spectrum CBD Oil (HempWorx, MyDailyChoice, Las Vegas, Nevada), 12 drops twice a day for restless leg syndrome. The patient reported having improved sleep but associated gradual blurry vision which made her visit the optometry clinic.

At the three and six-month follow-ups, the patient’s refraction was re-assessed, and her improved VA remained stable with no report of blurry or worsening of vision, headache, or eye strain. The patient continued to take CBD oil regularly as before and claimed her improved vision to the intake of CBD oil. The patient additionally reported no significant change in diet, lifestyle, and medication and reported her new glasses to be “perfect.” At the nine-month tele-visit follow-up, the patient ran out of CBD oil and thus had to stop taking CBD oil for three to four weeks. Within three weeks of stopping the CBD oil, the patient again noted a gradual worsening of her vision. The patient tried her old prescription lenses with -2.25 OD and -2.00 OS refractive error correction and reported seeing clearly. She had reverted to her original myopic state after stopping the CBD oil.


Based on the patient’s history and ocular examination, there is a clear hyperopic shift in the patient’s refraction after initiation of the CBD oil supplement and its reversal after stopping the CBD oil. Her refractive error remained unchanged while she was on the CBD oil supplement and attests to the use of CBD oil regularly as she finds relief from her restless leg syndrome. Possible etiologies of her refractive shift include the patient’s status of diabetes mellitus type 2, medication history, and her recent use of CBD oil [5].

Based on the exam and imaging, our patient had classic diabetic retinopathy (last HbA1C 12.8%) with no significant macular edema. Myopic shifts in vision are reported in about 4% of the diabetic patient population, however, hyperopic shifts are reported even less often. Myopic and hyperopic shifts have been traditionally thought to be due to hyperglycemia and hypoglycemia, respectively, but recent studies have suggested hyperopic shifts can also occur due to hyperglycemia [6]. The hyperopic type of refractive shift in an uncontrolled diabetic patient has been mostly attributed to the changes in the refractive index of the lens due to fluctuations in water distribution [7-9]. In the current patient, the timing of the onset of refractive change, along with her chronic state of uncontrolled diabetes (based on her last three years of high Hb A1C numbers), is unlikely due to her hyperglycemia, especially when associated with the change in vision over three weeks of time after the initiation of CBD oil. Interestingly, her refractive shift was stable while she was on the CBD oil and reverted to her original myopia after she stopped taking the CBD oil.

The association of vision change after the start of the CBD oil cannot be ruled out as one of the plausible causes. The authors are aware that this is an isolated case report where the patient clearly related her gradual change in vision after starting the CBD oil drops twice daily for six weeks. While the mechanism by which CBD oil affects refractive error is still an area for further exploration, CBD has been shown to regulate blood flow in retinal vessels and help in reducing neurotoxicity, oxidative stress, and blood-retinal barrier breakdown. The possible inhibition of p38 MAP kinase may also be a possible theory for the hyperopic shift [10-12]. Effects of cannabinoids on the anterior segment of the eye are also multiplex, and some studies indicate decreased corneal endothelial density [13]. Further studies will be needed to assert the findings from this isolated presentation of the case to better understand the role of CBD oil in refractive errors of the eye, especially in a diabetic condition.


We present a case where a woman taking CBD oil orally for six weeks on a regular basis was found to have an improvement in myopia. In addition, her hyperopic shift reverted to her original myopic vision once she stopped taking her CBD oil. To our knowledge, this is the first case of CBD oil in association with a hyperopic shift. The mechanisms by which her VA improved are uncertain and can vary from possible corneal changes to retinal vasculopathy. Hyperopic shift due to her diabetes and antihistamine medications are a possibility, although unlikely, due to her established disease and chronic medication use. There is no previous case report of such an association in hyperopic shift and no prior head-to-head study looking at specific types of CBD oils and other forms of cannabinoid products. This novel isolated incident between CBD oil and change in VA requires additional, controlled, blinded research for further applicability.


The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

How useful was this post?

Click on a star to rate it!

Average rating 5 / 5. Vote count: 1

No votes so far! Be the first to rate this post.